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SUMMARY

This document describes the formulation and implementation of a computational boundary for elastic

solids based on doubly asymptotic approximations (DAA). DAA's combine high-frequency (wave

propagation) and low-frequency (quasi-static) approximations in an systematic manner to produce a

relationship between scattered-wave tractions and displacements on the boundary; this relationship

approaches exactness at high and low frequencies and provides a smooth transition between. Second

order DAA's for three-dimensional, linear-elastic infinite and semi-infinite media are developed for

implementation into general purpose numerical (finite element or finite difference) programs. In

addition, modal DAA's for spherical cavities are developed. Then, DAA results, both general and

modal, are compared with analytical and other numerical results for problems involving infinite and

semi-infinite media.
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SECTION 1

INTRODUCTION

Non-reflecting boundaries for transmitting transient wave energy in an unbounded elastic solid have

many applications, including ground shock analysis, earthquake analysis, and quantitative

non-destructive evaluation. For example, in a dynamic analysis of a fully or partially buried structure,

the structure is of primary concern, but a certain amount of the surrounding soil is typically included

in the analysis to treat the soil-structure interaction. Unfortunately, spurious reflections intrude into the

calculations when waves scattered from the structure reach a fixed or free soil boundary. This forces the

analyst to keep the boundary far from the structure, thereby requiring the inclusion of an large amount

of soil. Thus, non-reflecting boundaries, which may be placed relatively close to or directly on the

embedded structure, are needed.

Because of the broad spectrum of frequencies that need to be included in many transient dynamics anal-

yses, it is not efficient to employ Fourier transform (time-harmonic) methods. More importantly, when

the near-field medium and/or structure respond nonlinearly, time-harmonic methods cannot be used;

only transient methods can be used. Doubly Asymptotic Approximations (DAA's) are time-domain

non-reflecting boundary relations that match asymptotically the exact elastodynamic integral represen-

tation for infinite and semi-infinite domains at both early and late times. For broad-spectrum problems,

doubly asymptotic approximations are more robust than singly asymptotic approximations, which only

match the exact representations at one limit.

Currently, most non-reflecting boundaries implemented in transient finite-element analysis programs
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are based on the plane-wave (early-time) approximation(see, e.g., (Whirley, 1991)), which is singly

asymptotic. If the problem of interest involves late-time, low-frequency components, the plane-wave

boundary will produce incorrect results. However, the second-order DAA derived during this study

will reproduce with high fidelity both the early-time and late-time responses, and will reproduce with

good accuracy the intermediate-time response.

Underwood and Geers (Underwood and Geers, 1981) heuristically formulated and Mathews and

Geers (Mathews and Geers, 1987) developed further the first-order DAA for an infinite domain (DAAW).

The goal of the present study has been to formulate and evaluate doubly asymptotic approximations

for transient elastodynamic analysis, especially second-order approximations, that have not been pre-

viously formulated. The specific objectives under this goal are:

1. Develop the first-order doubly asymptotic approximation for a homogenous, semi-infinite, elastic
domain (a half-space): DAAH. To achieve this, a first-order late-time approximation is derived
and a systematic operator-matching method is employed to combine the early-time and late-time
approximations into DAA{'.

2. Develop the second-order doubly asymptotic approximation for a homogenous, infinite, elastic
domain (a whole-space): DAAw. To achieve this, second-order approximations for early-time
(high frequency) and late-time (low frequency) response in infinite domains are formulated. In
addition, a second-order operator matching method is employed to combine the early-time and
late-time approximations into DAAw.

3. Develop the second-order doubly asymptotic approximation for a homogenous, semi-infinite, elas-
tic domain (a half-space): DAA•'. The principal challenge in this effort is determining a second-
order late-time (low frequency) approximation for a semi-infinite elastic domain. The same
operator-matching method used in the previous component is used to contruct the DAAH.

4. Obtain exact and DAA relations for the dilatational, rotational, and translational motions of a
spherical boundary in an infinite elastic medium subjected to transient internal tractions.

5. Compare numerical DAA'V, DAAH, DAAwv, and DAAH results for selected evaluation prob-
lems with those of other investigators. This involves the development of general-purpose com-
puter programs based on the boundary element method. In addition, comparisons are made be-
tween the analytical modal results of the previous objective and corresponding results generated
with the general-purpose DAA programs.
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How these objectives are reached is documented in the following sections. The literature in the field is

reviewed in Section 2. In Section 3, the fundamental equations used in this study are presented. Sec-

tion 4 addresses the first- and second-order early-time (high-frequency) approximations, and Section 5

addresses the first-and second-order late-time (low-frequency) approximations. In Section 6, the first-

and the second-order doubly asymptotic approximations are formulated by operator matching.

Section 7 presents exact and DAA relations for breathing and translational motions of a spherical bound-

ary in an infinite elastic medium. In Section 8, various DAA results are compared with results obtained

by other means. Finally, Section 9 states the conclusions reached in this study.
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SECTION 2

REVIEW OF THE LITERATURE

In this chapter we review previously published work in the field of transient elastodynamics as applied

to non-reflecting boundaries. We will concentrate on the theoretical work more than on the numerical

work. The numerical aspects, especially for non-reflecting boundaries, may be found in Manolis and

Beskos (Manolis and Beskos, 1988).

2.1 ELASTODYNAMIC THEORY.

The foundations of dynamic elasticity were laid by Poisson, Stokes, Kirchhoff, and Love (Poisson, 1820),

(Stokes, 1849), (Kirchhoff, 1883), (Love, 1904b), (Love, 1904a), (Love, 1944). Poisson formulated

the initial value problem for a dynamic elastic domain in 1819. Poisson's formula results from trans-

forming the wave equation, • c2 V2V, into an integral formula that equates the value of 0 at a point

to an integral taken over a sphere surrounding the point. Kirchhoff generalized this formula to equate

the value of 0 at a point to an integral taken over an arbitrary surrounding surface. Stokes established

the fundamental singular solution of the equations of elastodynamics in an infinite region due to a time-

dependent concentrated body force. Love added to this foundation, proving that certain initial velocity

conditions involving continuity had to be met for the integral equations of Poisson and Kirchhoff to be

applied properly (Love, 1904b), (Love, 1904a), (Love, 1944).

Doyle (Doyle, 1966), using results from Sternberg and Eubanks (Sternburg and Eubanks, 1957), deter-

mined that the fundamental singular integral equations could be simplified by employing the Laplace
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transform. In addition, Doyle showed that the initial- and boundary-value problems could also be for-

mulated using the Laplace transform. Cruse and Rizzo (Cruse and Rizzo, 1968) extended Doyle's re-

sults to the solution of general problems by using boundary element methods in the Laplace transform

domain. The drawback of this approach is the difficulty of transform inversion.

If the boundary integral equations are not Laplace transformed, they contain convolutions in time. The

solution of geometrically complex problems through the use of time convolution is very computer-

resource intensive. Therefore, neither Laplace-transformed nor time-convolved boundary integral equa-

tions are suitable for use as non-reflecting boundaries in practical transient elastodynamics

analysis (Manolis, 1983).

2.2 NON-REFLECTING BOUNDARIES.

The objective of a non-reflecting boundary in scattering analysis is to completely absorb the scattered

waves in order to simulate an infinite domain. Some early work on scattering in an elastic solid was

done by Ying and Truell (Ying and Truell, 1956), who formulated a solution for the problem of a plane

longitudinal wave scattered by a spherical obstacle in an isotropically elastic solid. This formulation,

like so many others (Pow and Mow, 1972), (Uberall and others, 1990), assumes the incident and scat-

tered waves are time harmonic, which, as mentioned above, is not applicable to problems involving

non-linear transient response.

A second method used in scattering problems is ray theory (Achenbach and others, 1982). Ray theory

has been widely used in electromagnetics, where it is often called geometrical optics. Ray theory em-

ploys asymptotic approximations that are accurate for high-frequency
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response (Achenbach and others, 1982), (Freidlander, 1958). Ray theory was extended by H. B. Keller

and by J. B. Keller and his coworkers from electromagnetics and acoustics to

elastodynamics (Keller, 1964), (Keller, 1958), (Ahluwalia et al., 1969).

Recently, Givoli and J.B. Keller have developed non-reflecting boundaries for transient elastodynam-

ics (Givoli and Keller, 1990), (Givoli, 1992). These boundaries pertain to a two-dimensional circular

geometry, and would be difficult to implement in a general manner. Kallivokas (Kallivokas et al., 1991)

have developed a high-frequency (singly asymptotic) non-reflecting boundary for two-dimensional ap-

plications that is based on elastodynamic ray theory (Keller, 1958).

Doubly asymptotic approximations were originally developed to treat structures submerged in acoustic

media by Geers in the 1970's (Geers, 1971), (Geers, 1978). Since that time, DAA's for acoustic me-

dia has been extended and more systematically derived (Felippa, 1980a), (Geers and Felippa, 1983),

(Nicholas-Vullierme, 1991), (Geers and Zhang, 1991). A first-order DAA has also been formulated

for electromagnetic scattering by Geers and Zhang (Geers and Zhang, 1988). The first-order doubly

asymptotic approximation for infinite elastic media was formulated heuristically by Underwood and

Geers (Underwood and Geers, 1981), and further developed by Mathews and

Geers (Mathews and Geers, 1987). As mentioned previously, doubly asymptotic approximations are

much more robust than singly asymptotic approximations.
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SECTION 3

FUNDAMENTAL EQUATIONS

In this section we present the fundamental equations that are used to formulate the DAA's. Small char-

acters with arrow accents represent vectors, capital characters represent tensors or matrices, and stan-

dard font characters represent scalars.

Let us express the displacement vector il(Y, t) through a Helmholtz decomposition in terms of a scalar

potential 0(1, t) and a vector potential ?(x,y,z,t) as (see, e.g., (Achenbach, 1973)),

ff(-, t) = V5(-, t) + V X ý(Y, t), V - (Y, t) = 0. (3.1)

The wave equation for a uniform elastic medium then separates into the uncoupled wave equations

cD2V 20(i,(t) = ý(I,t),

(3.2)

S~=

in which CD and cs are the dilatational- and shear-wave speeds, respectively, given by

2 A 1 + 2p2 P(CD= , c = - (3.3)p P

where A and p are the Lame' parameters for the medium. The stress tensor is given by

(see, e.g., (Eringen and Suhubi, 1975))

6 = A V 2 $I + 2yVV0 +pt(VV x + V x bV). (3.4)
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Where I is the identity tensor.

An exact integral-equation solution to (3.1) and (3.2) on the smooth surface or surfaces of an elas-

tic medium is provided by Love's integral identity, which may be written in Laplace-transform space

as (Cruse and Rizzo, 1968)

1i(,s) + itZ(P, s)T(F, P, s)dSp T= P - "U'F, P, s)dSp. (3.5)Is is

In this equation, F is the field point and P is an integration point on the surface S; i6(F, s) and t(P, s)

are surface displacement and traction vectors, respectively.

For a whole-space, T(F, P, s) and U(F, P, s) are second-order tensor operators with components

1uij(s) =- (y•6 j - R j)
47r i

(3.6)

Tj( 1 d-y 1 V OR

947r dR R X)(iOn
-_ 2R 2Rnj-i OR dR OR-WVnj9 2- iR'j-Tn ) -2 2-RRiR'j On

+ 2D d X R)R,inj],cT dR dR R

where the usual Cartesian tensor notation applies, R is defined as I riP - r'F 1, and where /(R, s) and

X(R, s) are given for three dimensions as:
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x

Figure 3-1. Description of semi-infinite domain for force normal to surface.

C2 slc C2 2 aIC

c-sR/S C S (CD CD2 sR
-(R, s) = R+ + -- ) e

sR s2  R CD sR sR

(3.7)

US + • _ -s) cc( 3CD D• )e !ox(R,s) = (1 ±-.-±-3c R -2 R

sR s2 2  R CD sR

The second-order tensor operators used in equation (3.5) for a half-space have been derived previously

by Banerjee and Mamoon (Banerjee and Mamoon, 1990). The first group of operators is based on a

force vector normal to the half-space boundary, and the second group is based on a force vector parallel

to the boundary. Figure 3-1 shows the coordinate system and the other geometric quantities used for

the first group of operators, which obviously pertain to an axisymtric problem. The notation used is

that of Banerjee and Mamoon.

9



Figure 3-2. Description of semi-infinite domain for force parallel to surface.

The operator components pertain to the following point forces:

1. Single dynamic force at (0,0,+c)

2. Single dynamic force at (0,0,-c)

3. Dynamic double forces at (0,0,-c)

4. Dynamic centre of compression at (0,0,-c)

5. Line of dynamic centers of compression extending from z =-c to z = -oo

6. Dynamic doublet at (0,0,-c)

The resulting operator components are given the appendix.

Figure 3-2 shows the coordinate system for the second group of operators. The point forces consist of

1. Single dynamic force at (0,0,+c)
2. Single dynamic force at (0,0,-c)

10



3. Dynamic double force with moment at (0,0,-c)

4. Line of dynamic double forces with moment extending from z = -c to z = -0o

5. Dynamic doublets at (0,0,-c)

6. Line of dynamic doublets extending from z = -c to z = -oo with strength proportional to the

distance from z = -c

The resulting operator components are given in the appendix.

The U1 components in (A. 1) and (A.2) are identical to those of the first of (3.6), which is the standard

Kelvin solution for a point force in an infinite elastic space. The other terms are additional terms to be

added to the basic Kelvin solution to form the half-space solution (Brebbia and others, 1984). The T

operators for the half-space are found from (A.1) and (A.2) by differentiating the 0 components with

respect to spatial coordinates (Brebbia and others, 1984). The operators (A. 1), based on the cylindrical

coordinate system, are transformed to the Cartesian coordinate system using standard tensor techniques

for coordinate transformations.
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SECTION 4

EARLY-TIME APPROXIMATIONS

Early-time approximations are non-reflecting boundary relations valid for ct < a, where a is a char-

acteristic dimension of the boundary S and c is a wave speed (Felippa, 1980b). The approximations

are local; they depend only on geometrical information in the neighborhood of the field point F. Thus,

early-time approximations for an infinite domain (whole-space) are identical to those for a semi-infinite

domain (half-space).

We present herein two derivations of early-time approximations. The first derivation is based on ray

elastodynamics (Keller (Keller, 1958)). The second is based on work by Felippa (Felippa, 1980b) for an

acoustic medium, which is in turn based on Kirchhoff's retarded potential formula (Kirchhoff, 1883).

The two derivations produce the same relationships involving the displacement potentials. Those re-

lationships are then used to formulate two early-time approximations (ETA's) involving tractions and

displacements.

4.1 RAY ELASTODYNAMICS DERIVATION.

In this section we present the first method for deriving the early-time approximations. This derivation is

accomplished using ray elastodynamic theory developed by J.B Keller and H.B. Keller (Keller, 1964),

(Ahluwalia et al., 1969), (Achenbach and others, 1982). The basic assumption of ray elastodynamics

is that disturbances are propagated along rays to which the disturbance surface, i.e. the wavefront, is

always normal. Figure 4-1 shows the basic geometry.
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Ray Bundle

FS

Figure 4- 1. Definition of ray bundle for elastodynamics.

The potentials in (3.1) may be represented by a ray series (Ahluwalia et al., 1969)

0(1, s) - exp[-Sp(Y)/CD]Om=O(- D )-(m+I)•m (5)
CD

(4.1)

VY(Y,s) = exp[-sc(p5)cs]O' 0 (-i)(m+1)Im(5),

CS

where the phase function p(!) and the amplitude functions (Dm(5) and ymn(5) depend on the spatial

variables, but are independent of s, the Laplace transform parameter. Keller (Keller, 1964) has shown

that, at high frequencies, the displacement potentials can be adequately described with only the first

13



term in each expansion (4.1) as

O(F,,s)" exp[-sr1/cD] q ± R c)( 2 ) (F,O,s) (4.2)
( +Rý)(t1 + R

Rý R( 1~ý(F, 77) s) exp[-.sq/cs] (-R)(+ • V,(F, 0, s),

where the argument 0 denotes the initial wavefront on the surface, Rý and R( are the principal radii

of curvature of the initial surface, and q1 is the coordinate along the ray, which is orthogonal to each

wavefront and straight for homogenous media. Equation 4.2 relates the displacement potentials at some

point r/ along the ray to the initial disturbance surface, and to the initial amplitude functions O(F, 0, s)

and V/(F, 0 s).

At a field point F on the surface, the ray is directed along the normal to the surface. Therefore, taking

derivatives of o with respect to the local coordinates at F, we obtain

(F,--- exp[-S R( c$(F,0, s)

Ofl CD [(77 + R')( + R().

1 RCR((27 + Rý+R (7/ + Rý)(i 7 + R()
2xp[-SY/cD] (77 + Rý) 2 (i1 + R0) 2 , R CR¢ (F, 0,s

•0, (4.3)

00

From the first of these, the partial derivative of 4 with respect to the local normal at the point F on the
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surface is just

06( R,(F'R-.s R• + O s)(F, 0, s)l=i~m -(nn q, _) •(D 2•R!fF

all n- an CD 2RýRc

(4.4)

- -+ +,)q(F,0,s),

CD

where K is the mean curvature (positive when the surface is convex). In (4.4), the derivative of the scalar

potential at point F is related to the scalar potential itself at the same point F. We can readily obtain a

similar result for the vector potential J. Thus we have the following results for the partial derivatives

of the displacement potentials with respect to the local coordinates at point F:

-(F,s) _-(- + K)s(Fs)
Tn CD

cSŽ(F,s) = ( +)(s
Ofl CS

O(F,s) • 0 (4.5)

O-(F, s) , 0

0o(F,s) , 0

O(F, s) • 0.

These results are used below to form early-time approximations.
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tangent plane at F

Z

Rmc

S

Figure 4-2. Coordinate systems on surface for early-time approximations.

4.2 RETARDED POTENTIAL DERIVATION.

In this section we develop the elastodynamic equivalents to Felippa's first two early-time approxima-

tions for acoustic media (Felippa, 1980b). We use two local coordinate systems, as seen in Figure 4-2.

The first is a Cartesian system centered at point F, where x and y define the plane tangent to the sur-

face at F. At point F, x and y coincide with the orthogonal surface coordinates ý and '. The second

coordinate system is a cylindrical system (r, 0, z) with r2 = x2 + y2.

The distance between the field point F and the integration point P is given by R, which is R = xi• +z2.

Felippa expanded the Z coordinate of the surface in a Taylor series about the point F to get

z = AR2 + BR3 + (C - A3 )R4 + (D - -A 2B)R5 +.... (4.6)
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where

04= 2.zco2 i)J2z Q2: in
2ox02 0 2  2

,A O2Cos. sin 0 cos 0 + y-----n

03z 0%z 0%z
B = -cos 3  +3 sin0cos2 0+ 3-sin

3 0 (4.7)

The derivatives 221,... are assumed to exist at F, i.e., the surface is smooth.

First, we discuss irrotational motion. The integral solution to the wave equation for the scalar displace-

ment potential 4 is

2ro(F, t) = R- 0(P, tR) + R)-2OR ((P, tR)+R ( )dSp, (4.8)Ls R On Onl ( CD

which is Kirchhoff's retarded potential formula (Love, 1904a), (Eringen and Suhubi, 1975), where t R =

t - W'co represents the retarded time.

We expand 0 about the field point F in a Taylor series to get

O(P t = (F t)+ o¢(F, t) ý o (F, t) C + 1a0(,t) ý
¢b(P,t) = €(Ft) $- ) O+$- - 1-02

(4.9)

+_12 192
+-'(Ft) ý( + 2- E-(F, t) (2 .-

At F, the coordinates • and • coincide with the x and y coordinates, and can be approximated as

= Rcos0[1 + O(R 2)], ( = Rsin0[1 + O(R 2 )] (4.10)
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Therefore,

O(P, Ftt) + (xF,t) R0cos6[ + O(R2)] + (F,t) Rsin0[1 + O(R2)]

+ -ý(26(F,t) cos2o+ (F,t) cosOsinO (4.11)
I20Xd2 iaxay

1 02q, ,..2}R2r1+( 2 ]±.
+ I- 2yl(F,t) sin20 [l + O(R2)] +

The normal derivative of € may be similarly expanded to obtain

y¢(Pt) 0 (F,t) + (F, t) RcosO[1 + O(R 2 )]

026

+a0 (F,t) Rsin0[1 + O(R 2)]

+ (F,- t) (F,tt) cos0sinO (4.12)
+2 (,c2O+ OnOxOy

+ 1 y_-t sin 20 R 2[1 +O(R 2 )] +

We now introduce (4.11) and (4.12) into (4.8) and utilize Felippa's expansions for R-'dS and R- 2 
OdS,

viz,

1 2

R-'dS = (1+A2R 2 +-..)dRdO

(4.13)

R-2-RdS = -(A + 2BR + 3(C-A 3 )R2 +-.-)dRdO
On

18



to obtain

2r6(F, t) J j t  On (F, tR)dOdR

(4.14)

'Df {' t2)+ R (F, tR)) (-A)dOdR.

Note that O(F, tR) and its normal derivative are functions only of the retarded time tR and not the co-

ordinates R and 0.

Next, we integrate over 0 and divide through by 27r to get

O(F,t) C (F, tj)dR - K C 1 (F, tR) + R dR (4.15)fo anO1 CDI

where K is again the mean curvature of the surface at F. Then, making the variable change, R = cD(t -

tR), we get
t 90 t{ , ,(F, tR)}+( R)DV R

O(F, t) - CD - (F'tR)dtR - CDK fR) +(t- tR) "(-R)}dtR.

(4.16)

Finally, integrating by parts and noting that O(F, 0) = 0 for quiescent initial conditions, we obtain

k(F,t) + KCDO(F,t) 0 CDn(F, t). (4.17)

which, when transformed to the Laplace transform domain, gives

(s + KCD)O(F,s) ; -CD- (F, s). (4.18)
a9n

We observe that this is identical to the first of (4.5)
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Now we consider solenoidal (rotational) motion. The integral solution to the wave equation for the

vector potential z is

27'(F, t) R- 1-(P, tR)

(4.19)

+ ?R a (ý'(P, WR S -O•'P, Wn) } dS.

This is again Kirchhoff's retarded potential formula (Eringen and Suhubi, 1975). Thus, application to

4 of the procedure described between (4.8) and (4.18) yields

(s + Kcs)4'(F,s) = -cs- (F, s). (4.20)
an

We observe that this is identical to the second of (4.5).

4.3 FORMULATION OF ETA2.

In this section we employ (4.5) to obtain early-time relations between surface tractions and displace-

ments that do not involve spatial derivatives. For (4.5) we used a local curvilinear coordinate system ý,

(, n with the origin at point F, characterized by two principal curvatures, Rý and RC (Figure 4-1). Thus

we can write = R 01 and( = R(0 2, so that our metric coefficients are h, = Rý, h2 = RC, and h 3 = 1.

We also note that, because the spatial derivatives of the scalar and vector potentials are non-negligible
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only for the normal direction, we have the early-time surface formulas (Moon and Spencer, 1961)

V0 k
V¢•On

SP7an + R-',0()i + (-a- + R' 1 $)j

V2• V(V.4')- Vx×Vxan On

~ •~ n2 +---f-n + (Rý - R0)R-•'R-2,]

+ ýn- + 2- • + (Rc - Rý)R( RR- IV¢]j

V 2q$ a20 2Kn- (4.21)

0 0 0

VV0 0 0 0

0 0 a-6-j

an
2

V(Vxik)+(V x4')V•

o 0 :-4-~R-' ~+R~20-~~- • On

a2 o -+R1 R-R2
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We obtain the early-time displacement-potential surface relations by introducing the first two of (4.21)

into (3.1), which yields

a6

al( -n R- (4.22)

an

We obtain the early-time traction-potential surface relations by introducing the last three

of (4.21) into (3.4) and defining surface tractions t,, tý, and t( as the negatives of ann, gn, and a on

the surface; this yields

an2tn -(PC, on 2 + 2A- an

P 2p(anO2  + R-1 a0 R(_20C) (4.23)

t( -Ps2(a2Oý + R-1a -2o---.

San2 ý an

Also, we obtain early-time surface relations between the potentials and their normal derivatives by in-

troducing the third and fourth of (4.21) into (3.2) and applying the Laplace transform for quiescent

initial conditions to get

s2 a20 + ,
C2D an2 an
2 2 + 2 an + (Rý - R()R- IR4 (4.24)

CSan 2  an

[an2 an

With (4.5) and (4.22) - (4.24) in place, we may now proceed to derive the desired early-time relations.
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First, we eliminate 6 in the first (4.5) by introducing the first of (4.24), eliminate 2 6 in the resulting

equation by introducing the first of (4.23), eliminate 2 in the resulting equation by introducing the firstan

of (4.22), and make use of the first of (3.3); this yields

(8 - t+ccD)tn == (pCDjj4 + 4pK)su,, (4.25)

where terms of O(s°) on the right side have been dropped.

We find the early-time stress-displacement relations involving the shear stresses by first using the sec-

ond of (4.5) to eliminate L and alkc in the last two of (4.24), which yields
an an

n [s2cs 2 + 2K(sca' + K)- RK '(R)" - R-)]O

(4.26)

a2 : [S 2 Cs 2 + 2K(scs' + t) - R-'(R' - Rl)]O,.

Second, we use the second of (4.5) again to eliminate 2on and U in the last two of (4.23), which yields
an an

2 02 V'(

(4.27)

t -P2[ N2 - R (scs' + K + R .

Third, we eliminate n2c and a2v in (4.27) by introducing (4.26) to get-On2 2n2
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t•~SI , cs[%• + (2K• - R( ').5cs' + 2{1 - Rý'(R(' - Rý 1))

(4.28)

t( - -pcI[S2 C- 2 + (2tz - R-')sc-' + 2{JK2 - R-'(R-' - R-1))

-Rf'(,K + a[)]•

Fourth, we use the second of (4.5) a third time to eliminate % and in the last two of (4.22), which

yields

(4.29)

U( -(8cs' + ,K - Rý 1)0ý.

Fifth, we eliminate O/ and 0( in (4.28) by introducing (4.29) to obtain

(S +- Cs)tQ , pCs(s2 +" Ricss -- Rý1 )u,

(4.30)

(S - /Cs)t • pcs(S2 + R-'css - OR, )uý,

where3 = K- R(1 = -(tz - Rý-1).

The traction-displacement relations (4.30) are not quite in proper form. Thus, we multiply the first
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of (4.30) by (6 + KcsY(, + 3.cs) and the second by (s + hcs Y(s /3cs) to get
s+K Cs2

(s + KcS)t. • pcs S + CS + J-css)U,

(4.31)

s + cs2

(s + Ccs)t( . pcs - (s( +KR- 1css)u(,

where terms of O(sO) on the right side have been dropped. Finally, we employ long division and retain

terms only in s2 and s to obtain

(s + KCS)tQ [pcss + 2KP]suý

(4.32)

(s + Kcs)t( . [pcss + 2qc]su(

The desired relations (4.25) and (4.32) may be assembled to produce the second-order early-time ap-

proximation ETA2 for an elastic medium:

(s + •cD)t, = (pCDS + 4pr)su,,

(s + Kcs)t1 = (pcss + 21iK)suý (4.33)

(s + KCS)t( = (pcss + 2juc)su(

These are immediately inverse-transformed to obtain the ETA2 in the time domain:

it + KCDtn = PCDfin + 4/1Kut,

i4 + I'cstt = pcsiiý + 2tpciq (4.34)

ic + Kcst¢ = pcsiie + 2p•i C(

25



which may be written

t(F, t)+ KCI(F,t) pC-U(F,t) + KA-7(F,t) (4.35)

where

CD 4PL

0= P A 2JL (4.36)

cs 2ii

For very early times (s -+ co) the second order ETA obviously reduces to the first-order ETA

t(F,t) = pCi7(F,t) (4.37)

We have completed the formulation of the early-time (high-frequency) approximations ETA1 and ETA2.

These approximations are commonly called the plane wave and curved wave approximations, respec-

tively. A key property of these approximations is that the coefficient matrices are diagonal; therefore,

the approximations are spatially local with uncoupled local components.

We now rotate the early-time approximations from local coordinates to global coordinates. Displace-

ments and tractions in local coordinates can be rotated into global coordinates as

il(F,t) = Q(F)i_(F,t)

(4.38)

F(F,t) = (F) _(Ft),

where Q is the rotation tensor. Then (4.37) becomes

Qý(F,t) = pOQ.4(F,t), (4.39)
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which yields ETA1 in global coordinates:

i(Ft) = pCI(F,t), (4.40)

where, because Q- = (T (rT The corresponding first-order high-frequency approximation

is therefore

T(F,s) = p~s ?7(F,s), (4.41)

The second-order early-time approximation can be similarly rotated to get ETA2 in global coordinates:

L(F,t)+K f_(F,t) = pOI•(Fjt)+KATI(Ft), (4.42)

where A = QTAQ. Hence the second-order high-frequency approximation is

(s + _t_-D(F, s) = (pus + KA)sil(F, s) (4.43)

From this point we will work in global coordinates only; the underlines will be dropped with the un-

derstanding that all quantities are global.
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SECTION 5

LATE-TIME APPROXIMATIONS FOR ELASTIC DOMAINS

Late-time approximations pertain to low-frequency response, for which the chacteristic elastodynamic

wavelengths CD/f and cs/f are much larger than the characteristic dimension of the boundary. We will

derive first the late time approximations (LTA's) for the infinite domain (whole-space) and then derive

the LTA's for the semi-infinite domain (half-space).

5.1 LATE-TIME APPROXIMATIONS FOR A WHOLE-SPACE.

We use (3.5) - (3.7) to construct an approximation that approaches the exact solution as s - 0. First,

we expand (3.7) in Taylor series as

1 c2 + 1IIc j 2 )s+RcEs 3
-'(R, s) =- + (4 ++S)-(++ ) +(3)-

2 R cD 3 CD c 8 CD CS

(5.1)

1 c( -1) -(I--s + R( f c+ + O)s3+O
2R= D + 83),

Note that the second of these has no 0(s 1 ) term, and that the O(s') term in the first is independent of

R. Substitution of these equations into (3.6) produces

U(F,P,s) = •°(F,P) +sUI(F,P) + 0(s 2) (5.2)

T(F,P,s) = T 0(F,P)+0(s2).
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Where the components of 00, 0I', and fT are given by
1

-o =wp( s( - ,v)R [(3 - 4v)6bi + R,.jR,j]

tj [8- '__, -( -,) .)

-= 12 (1 -v)I[ -2ov + 2(1C i (5.3)

I =)R2  [(I - 2v)bij + 3R,iR,j] - (1 - 2v)(R.•nj - R,n}i)

With these relations, we can now form the late-time approximations for the whole-space.

5.1.1 First-Order Late-Time Approximation: LTA'.

Let us introduce (5.2) into (3.5) and retain terms only of 0(s0 ). Transformation back into the time

domain then yields the quasi-static relation

1 (F't) + f ii(P, t)T°(F, P)dSp = F (P, t) 0 (F, P)dSp, (5.4)

which we recognize as the standard Somigliana identity for elastostatics. The relation (5.4) is based on

the Green's function for an infinite elastic medium obtained by Kelvin in 1848 (Thomson, 1948). With

the spatial-operator definitions

Bý•(P,t) =_ (P't)U°(F'P)dSP

(5.5)

NX(P,t) 0 (P, t)[b(F - P) + T°(F, P)]dSp,

where 6(F - P) is the Dirac delta-function and - denotes a spatial tensor-integral operator, (5.4) may

be expressed as LTA"':

t(P, t) = i'-aFd(F,t). (5.6)
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LTA~v is a spatialy non-local, singly asymptotic, quasi-static approximation.

5.1.2 Second-Order Late-Time Approximation: LTA'.

Now we introduce (5.2) into (3.5) and retain terms through 0(s1 ). This yields

ii(F S s)+ i(,s T F )dp T(P, .s)U00(F, P) dSp + s L T(P, s)U1 (F, P) dSp.
(5.7)

With the spatial-operator definitions (5.5) and the new spatial-operator

f•( P, t ) =_ I ý(P, t) )0'(F, P)dSp. (5.8)

(5.7) may be expressed as the low-frequency approximation LFA•':

(s A + b)F(P,s) = 97t7(F, s). (5.9)

Transformation of this equation back into the time domain produces the second-order Late-Time Ap-

proximation for the whole space LTAw':.

Ar(P, t) + f3F(P, t) = f ii(F, t) (5.10)

LTA~W is a spatialy non-local, singly asymptotic approximation.

5.2 LATE-TIME APPROXIMATIONS FOR A HALF-SPACE.

In this section we derive the late-time approximations for a semi-infinite domain, or half-space. We

will use the same method as that used in the previous section for the whole-space.

Only the A, B, C, P, Q, and S coefficients given in the appendix are dependent on s. We need to expand

these coefficients in Taylor series about s = 0 to find the first- and second-order late-time approxima-

tions. The expansions for the unique terms are:
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A1 ' + (-+ CS+)S -R-+'5
A, k2R,+2 CD 2 Rh, V3cs 3 CD 3  ~ \CS2  SCD 4 /

+ O(s 3)

B11 =7 2 + ' + •f2 C4S I S2+0(S3)

A\ FR" 2 CD2Rj 8 CS2 8CD4

t7R = 2' + 2c2 R2• 8s 8CD4A3 = CS + ( CS 2 ) S2+0(83)

2 (2R72 + 2CD2 R 2 )2 + (CS 2 8- CD4] '+(

C3 = I-1 3 CS2  + -1 3 cs2  s2+ 0(.S3) (5.11)

B4 = -12R2 2+2c R2  + IC S2 Sc j9 /

(R__ - 2 CD 2R 22 + 3s2, (83)

A6 = 3 ~3±2CS~2) 3 (8C21 2 i: s 2 +0(S 3 )

B6 = (2 - 2C2 R23) ± (8c2R 2 + 8cD4 R2) "20(S3)

=S + 2CDR) + ( -3 cs 24) S2 + Q(3)
S3 = 2 22 + 2c2 R2 + --s 8 C D,

The terms of O(s0 ) are those that produce the first-order LTA for an elastic half-space. The expres-

sion for A1 contains the only O(sl) term. Thus, only UL, Q, U,2U,, and U. contribute to the second-

order LTA. We note that the tensor operator T(F, P) involves spatial deriviatives of the components

of U (Brebbia and others, 1984), (Cruse and Rizzo, 1968). Additionally, the expression for A, is in-

dependent of position (no R dependency). Therefore, T(F, P) will contribute only 0(sO) terms to the

second-order LTA, as is the case for the whole-space formulation.
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5.2.1 First-Order Late-Time Approximation: LTA,.

The first-order LTA for a half-space is a quasi-static approximation expressed by (5.4), but with To (F, P)

and U°(F, P) given by expressions corresponding to the half-space Green's function of

Mindlin (Mindlin, 1936), rather than that of Kelvin (Brebbia and others, 1984). These expressions are

constructed by augmenting (5.3), the Kelvin solution, with additional terms (Brebbia and others, 1984).

The additional terms, for both the 0°(F, P) and TO (F, P), are the 0(s') terms of U2 through U6 ,

[see (A.1), (A.2)].

For UH(F. P), the augmentation is

(]•/(F, P) = UO (F, P) + 0'-(F, P) (5.12)
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in which the components of Uf( F, P) are;

(I- = 81 _ 2-34v (3 - 4v)r' - 2c. 6c;r?]
- R2 + 1- 4

U. = Kdr 2 (3- 4v)r 1  4(1 - v)(1 - 2v) + 6ctr
"2 22 r +r, rH

Kdr4(3- 4v)rl 4(1 - v)(1 - 2v) 6cfrI
2R2 r + r, r4

Ud[ l+ (3 - 4v)r- 2 2 c 2 1 - 3r2)_

+ 4r(1 -v)(1 - 2v) 1 R 2(rr2))] (5.13)

S(3 -4v) 4(1 -v)(1 - 2v) 6 cr
R r + r R 2 (r + r2)r4

12

r33
r'2

UY r
yz r2

U = d[+(3 -- 4u)r 2 2c( 3r32

+ 4r(1 -v)(1- 2v) (1 r32 )

r + r, R2(r + rl)]

where INd 167r(1-L)tir and (see Figure 5- 1)

r, = (F) - Z (P) r2 = x(F) - x(P) r3 = y(F) - y(P)

Iri z z(F) - Z,(P') r'2 = x (F) - x (P') r'3 = y (F) - u(P')

R (riri)½ R2 =(''

S=z(F) c = z(P)

33



P '

R

F

z

Figure 5-1. Three-dimensional geometry (in case of the half-space, the infinite free surface lies in the

x - y plane).

T(F, P) is augmented as

TH(F,P) = T(F,P) + T*(F,P) (5.14)

in which the components of T*(F, P) are given by

Tij = orjkink z = 1, x = 2, y = 3 (5.15)

where nk is the surface normal (defined as positive going into the medium), and where the components
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of a' are, with Kt 8-

Kt[ 3(3 - 4v):.r' - U3crI(SX - c) 30c&3
17zzz R 3t 1-2vr 1 -R2R4

I Ar 2 [ 3(3 - 4.),++ - 9cx - :3c•2 3Oc r 12
-~ [1v J

•;-"- R•. R2 R2

- tr 3 [ 3(3 - 4v),rr - 9c± - 3c2  3Ocr• 12

U'yz- R v R 2 R

a K (I - 2v)(3r, - 4vr')- 3(3 - 4v)rlrR

+6cr(1 - 2vt - 2vc) 3cr- 2 r

4r2(lv)(1 - 2v) r2 r22

r + r, R 2(r + rl) R2)]

Ktr 2r3 [ 3(3 -4)rl 4(1 - v)(1 - 2v) ( 1 I 30ctr]axyz 3 ]R + 5
R Rr + r, (r + ri R 2  R2

Kt Ri (1 - 2v)(3r1 -4vrn)- 3(3 - 4v)rlr 2 6cr'[(1 -R2v)- 2vc]

3Ocrr 2r I 4r2(1 - v)(1 - 2v) r 2r r)2)]

K tr 2 [-(1-2v) 3(3-4v)r2 6c (( 5ir'•)1(I - 2v -R R 1 + c-- c+ (I - 2v)r'• + Rff1] (5.16)

Kt_ 3(3 - 4v)r22r' 6c (2 5.tr22r',
a, (I( [ 42v)rl tr' 6c yr_(1 - 2v)r2

_Ktr 2 r3
rzyr3 -3(3 -- 4v)r'1+6c 1--2v+ R2}J

= R_ (-tr2 )- 3(3 - 4v)r2 4r 2(1- v)(1 - 2v)
-rx ( v( - 4v) - R2(r + rl)2

(3 r(3R2 + rl))

2R 2(r + ri)

6W2 ( 5 3
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K__3 3(3 - 4v)r2 4r 2( - v)(1 - 2v) (_(3__+,',)

2 K - R 2(r + ri})2 ( 2 (r + ri)

6c±( 2q~

lltv2

= Ix r 2  - 3(3 - 4v)rR

4r 2(1 - v)(1 - 2v) r r2(3R 2 + rl)

(r + rl)2 R2(r +ri)

6c (c -(1- 2v)r' +5 r2

or-zzy = 01122

'zxy -= 132

Kt* (I [ 2v)rl 3(3-4v)r.2, 6c (2 r
W3t 2  W2zY = - 2K) R2 R2 R2

0u Y t4 (1 - 2v)(3 - 4v) - 3(3 -R•4+)r )

(R2 r) R2(~i4r3(- 2lr _ -)(1 - 2v) r(3R2 + r'3)
@5(1 )( 2. 1-

(r + rl) R2 ( r r + ri)

6c±( ,52 Ni
6- (c- (1- 2)r' +-Ur2)

2 r)
I-tr/ 3( -3(3-4r)2l _ 4 1 )(1 -2) r-2v(3R + r 3 ±oru --Y 3- 1 2v- 2.R2 (7 ,)2 n2( -- /1

R2 2( + (ri Rj 2 ( + R~ri r)
2 (

0,y - (I (1 2v)(5 - 4v) -3( -1] @51 "( - 3-
R2 IR2 (r" + ri) R2n(r" + 1)

R21r6c (3c - (3 - 2v)r', + U,52)5•

In operator notation, LTA, for the semi-infinite domain appears the same as that for the infinite domain,

given by (5.6).
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5.2.2 Second-Order Late-Time Approximation: LTA"/.

The second-order late-time approximation includes both O(s') and 0(s') terms in the half-space op-
erators. In (A.1) and (A.2), the U( components pertain to the Kelvin solution. The U2 components,
which are the image complements to IT', contribute components that have O(s') terms. From the dis-
cussion following (5.11), there are no 0(s' ) components of the f operator. Thus, the operators for the
second-order approximation are [c.f., (5.2)]

UH(F,P) = Uý(FP)+U)_(F,P)+O(s2)

(5.17)

TH(F,P) = Tý(FP)+O(s)2 .

When we substitute the results of (5.17) into (3.5), we get

IuF s)+ (PsT(FP)dSp =jtP UZ (F, P) dSP + sjI(P, s)U (FP) dSp
(5.18)

We can express this equation using the spatial-operators definitiions of (5.5) and (5.8) as the second-
order low-frequency approximation for a half-space

LFA2: [sA + P]iF(P, s) = Fi7(F,s). (5.19)

Inverse-transforming to the time domain we obtain the second-order late-time approximation for the
half-space.

LTA: At(P, t) + Bt(P, t) = Fg(F, s). (5.20)

We have now completed the formulation of both the first-order and second-order late-time approxima-
tions for the half-space. A notable result is that the late-time approximations for the half-space have
the same forms as their counterparts for the whole-space.
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SECTION 6

DOUBLY ASYMPTOTIC APPROXIMATIONS

In this chapter we combine, in systematic fashion, the early-time and late-time approximations into
first-order and second-order doubly asymptotic approximations for both whole- and half-spaces. We
conclude with the discretization of the DAA relationships using the boundary element method.

6.1 FIRST-ORDER DOUBLY ASYMPTOTIC APPROXIMATIONS.

Because the only differences between the first-order early- and late-time approximations for infinite
and semi-infinite domains reside in the operators T(F, P) and U(F, P), we can formally develop first-
order DAA's for the two domains simultaneously. We use the method of operator matching for this
purpose (Nicholas-Vullierme, 1991), (Geers and Zhang, 1991). The appropriate trial equation is

F(P,s) = [s (, + (1o] d(F, s) (6.1)

where the unkown spatial operators U0 and 01 are not functions of s.

For s-* 0, we write (6.1) as

F(P,s) = [Uo + O(s)] 9(F, s) (6.2)

and match with (5.6) as s-4 0, which yields

U0 =(6.3)

This is the asymptotic match for the static limit.

For s--- oc, we write (6.1) as

F(P,s) = [1' + O(s-')]sfi(F,s) (6.4)

and match with (4.41) as s--- oo to get

Ur = pC. (6.5)

Introducing this result and (6.3) into (6. 1), we obtain, in transform space,

DAA,(s): T(P,s) = [pCs +"b-' -] il(F,s) (6.6)

and in the time domain

DAA,(t): Ei(P,t) = pCiZ(F,t) + b-'1 fi(F, t) (6.7)

This result was heuristically formulated by Underwood and Geers (Underwood and Geers, 1981). Note
that the DAA, for elastic domains is not spatially local, because of the second term on the right, which
is the result of s -- 0 matching.
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6.2 SECOND-ORDER DOUBLY ASYMPTOTIC APPROXIMATIONS.

In this section we develop second-order DAA's consisting of a two-term low-frequency component and
a two-term high-frequency component. For the reason given in the previous section, we can develop
the whole-space and half-space DAA's simultaneously.. The appropriate trial equation is

(s + to)d(P, s) = (s'pC + .s6, + 0o)t7(F,s)

in which highest-frequency matching has already been performed, and to, U1, and U0 are unknown
spatial operators that are not functions of s.

We first match the trial equation as s -+ 0 with the low frequency approximations (5.9) and (5.19). The
left side of these may be inverted to yield

C(P, s) = [I - .s/-' A + O(s1)]f3-' fi7(F, s), (6.8)

inasmuch as (b + sA)-i = (I + sb-'A)-'/P-1 = [I - s!3-1BA + O(s 2)]!3-'. Similarly, the left side
of (6.8) may be inverted to obtain

r(P.s) = [I-STo 1 +O(s 2 )]TJo(Uo +sU1 +s2pC)il(F,s). (6.9)

We can first match (6.8) and (6.9) to O(s°) to obtain

i1;0Uo = f-af. (6.10)

and then match to O(sl) to get

" -- 1 Uo)"- - lA IF. (6.11)

We now match the trial equation as s -- oo to the second-order high-frequency approximation, (4.43),
which we write as

[I + s-Klj]'(F,s) = (p- + s-' •K)si7(Fs) (6.12)

Note that we have already matched at O(s0). To match at O(s-' ), we divide (6.8) through by s1 to get

(I + s-T0 o)F(P, s) = (pC + s-1U1 +- s-2 Uo)si7(P, s) (6.13)

The left sides of (6.12) and (6.13) may be inverted as s -* oc to get

jF.s)= [I - S- 1 KC + Q(S 2 )][P + s-KA~sii(Fs)

T(F, s) = [I - s-To + O(s 2 )][pC + s-U1 + O(s 2 )]sil(F, s) (6.14)
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Thus, matching the O(s•-) terms, we obtain

U, - p4oC= Kl - pKCd2 (6.15)

From (6.10), (6.11) and (6.15), the three unknown spatial operators may be found as

O [3 _ (pC 2 _ -)] (PC + f _ I

0 1  B 1 f --I fiA-l-- (6.16)

lJ'o = f!-F

Substitution of these results back into the trial equation produces the second-order DAA in s-space:

DAA 2(s): [s + !]F= [s 2 pC + s(b-1 F - /-1A ) + Q!-lt]i. (6.17)

Inverse transformation then yields the second-order DAA in the time domain:

DAA 2(t): t+ Qt= p•'l + (b/-1t _ B'-B--)i " B-fi- . (6.18)

6.3 MIXED-ORDER DAA.

Here, a one-term low-frequency matching is combined with a two-term high-frequency matching to
form the mixed doubly asymptotic approximation DAA 1 _2.

The trial equation is again (6.8). For the low-frequency match we use (5.9) with A 0. The matching
procedure of the previous section then yields (6.16) with A = 0. Thus we obtain the mixed-order DAA

DAAI_ 2 (s) [s + fl 1- 2 ]'= [.s22P0 + sb-F + i 1l-2•-lf]li, (6.19)

DAAa_2(t): t+ Qi12F= pCI'(t) ± -'7t(t) - Q- 2 B'Fd(t). (6.20)

where !p1-2 =[P-1!)-tC-1 + ic(C - p-1 -1)].

6.4 BOUNDARY ELEMENT DISCRETIZATION.

A robust method for applying DAA's to general surfaces is finite element discretization
methods (Underwood and Geers, 1981), (Mathews and Geers, 1987). We will discretize the ETA2 first,
by invoking the Bubnov-Galerkin
method (Cook et al., 1989). We have, then

ii(F,t) = N(F)u(t)

(6.21)

(F,4t) = N(F0t(t).
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where a boldface quantity denotes a computational (n-dimensional) vector or matrix. In (6.21), u(t) is
the vector for nodal displacements of the entire discretized surface, t(t) is the corresponding vector of
nodal tractions, and N(F) is a matrix of shape functions that interpolate nodal values from the nodes
to the point F. Applying Bubnov-Galerkin discretization to (4.42), we obtain the matrix ETA2

i(t) + Ft(t) = Dii(t) + Li(t), (6.22)

where
F = J NT(F)KCN(F) dS

D = N NT(F)pCN(F) dS

L = f NT(F)KAN(F) dS,

Similarly, the matrix ETA1 follows from (4.40) as

t(t) = Dii(t). (6.23)

Discretization of the late-time approximations proceeds in the same way, so that (5.10) yields the matrix
LTA 2

Ai(t) + Bt(t) = Gu(t) (6.24)

where A, B, and G are the discretized forms of (5.8) and (5.5). The matix LTA1 is obtained by taking
A = 0 in this equation.

Matrix doubly asymptotic approximations may be obtained from (6.22), (6.23), and (6.24) by the method
of matrix matching, which proceeds in exactly the manner as that described in Chapter 6 for operator
matching. The resulting matrix DAA2 is

i(t) + Wt(t) = Dfi(t) + (B-1G - WB-1 AB- 1G)ii(t) + WB-1 Gu(t), (6.25)

where
W = [B-1G -FD -L] [D±+B-1AB-1G]'

The DAA 1_2 is found from (6.25) by setting the matrix operator A to zero. The DAA1 is found by
matching only the O(s0 ) terms, it is

t(t) = Dii(t) + B-'Gu(t) (6.26)

Note that we can premultiply the nodal traction vector t (t) by the diagonal surface-area matrix contain-
ing element areas to get the nodal force vector.

In this section we derived the DAAj, DAA2 , and mixed-order DAA 1 _2 matrix formulations used on
the operator matching methods presented in section 6.2. The matrix formulations pertain to both the
whole-space and half-space. The first-order matrix DAA is a first-order ordinary differential equation;
the second-order DAA and the mixed-order DAA are second-order ordinary differential equations.
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SECTION 7

MODAL SOLUTIONS FOR AN ELASTIC WHOLE-SPACE

In this section we develop exact n = 0 and n, = 1 modal temporal impedance relations for a spherical
cavity in an elastic whole-space and the corresponding DAA2 relations. We show that the second-order
modal DAA agrees with the exact temporal impedance relation for n = 0.

7.1 EXACT MODAL EQUATIONS FOR n =0.

This first modal derivation is based on the acoustic work of Geers and Zhang 1991
(Geers and Zhang, 1991). We start with a spherical surface in an elastic whole-space and assume mo-
tion in the radial direction only. The following equations apply:

a00
= Or

ýo2 2A a0o0o= (A + 2u)., + - (7.1)
-0r2 r Or

a2 02o 2 06o
2~ 2O$

cD Or r Or
Here, 00 is the scalar displacement potential for the n = 0 mode, uo and 'o represent the radial dis-
placement and normal traction, respectively.

Laplace transforming the third of (7.1) and multiplying through by r2 , we obtain

r 2_2 +2r _-( )200 = 0. (7.2)
- Or CD

This equation is a form of Bessel's equation with n 0 (Arfken, 1970); the solution is

¢o(r,s) = fo(s)ko(rs) = fo(s)ko(•), (7.3)
CD

where n = I fA(s) is an unknown function of the Laplace-transform variable, and k(•) is the mod-
ified spherical Bessel function of the zeroth order.

Using the third of (7.1) to eliminate 2 from the second of (7.1), Laplace transforming, and then in-
troducing (7.3), we get

uo(r, s) = ps 2fo(s)ko(•) - -pUo. (7.4)

r

Now

0ko( ý) s
= - k'(), (7.5)Or CD4
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where k'(•) - k; thus, (7.3) and the first of (7.1) yield

uo(r,s) = fo(s) k (7.6)
CD

From (7.4)and (7.6), we obtain
0o(r,s) = r_ ko( V) 4 0]Uo(,,s), (7.7)

= pCDSkI• r

where the prime denotes a derivative with respect to •. But (Arfken, 1970),

ko (ý) =

ko() = _e-( + •-2) (7.8)

ko() 1

so that (7.7) may be expressed as

CD)=O 4+ps + 4JCD((s + -)o=(pCDS2 r- r2- )u , (7.9)
r r r2 )°

where the traction po = -'o and ý has been replaced by r VCD. This is the exact modal impedance
relation for n = 0 motion of a spherical surface in an elastic whole-space.

Note that, at early times (s -+ oc), (7.9) yields

Po = PCDilo, (7.10)

which is the standard plane-wave temporal impedance relation (Love, 1904a). At late times (s -- 0),
(7.9) yields

P0 =4p (7.11)
r

which is the static solution.

We will now develop an n = 0 modal impedance relation for shear traction and corresponding tangen-
tial displacement. Starting with a spherical surface in an elastic whole-space and assuming uniform
tangential motion that is only a function of the radial spatial coordinate, the vector displacement be-
comes a scalar function. Therefore, the following equations apply:

fto
V0 =- ar

a20o 2 fto
70 = P;( - - --jr) (7.12)

_o 120o 2 0¢o
_C2 - r2 + - "
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where ?/,o is the scalar displacement potential for the tangential n = 0 motion, and vo and r0 represent the
tangential displacement and the shear stress on the surface, respectively, for the n = 0 mode. Laplace
transforming the third equation of (7.12) and multiplying through by r2 , we obtain

2 a2V'o a .sr )2,ýo=0
+0' 002r -(-) =0. (7.13)

O2r Cs

This equation is a form of Bessel's equation with i = 0. Following the same process as that used for
radial n = 0 motion, we obtain for tangential n = 0 motion

(s + CS = [PCS82 + 2/ts + 2 Il (7.14)
r r r

2

We have now derived the n = 0 modal-impedance relations for both radial and tangential motions. In
the next section we show that DAA, when adapted to these one-dimensional problems, gives identical
equations.

7.2 DAA2 EQUATIONS FOR n=O.

We now develop a modal second-order doubly asymptotic approximation (DAA') for an elastic whole-
space. Again, we follow the acoustic work of Geers & Zhang (Geers and Zhang, 1991), outlining the
process for the radial motion case only, as the tangential case follows identical steps.

A second-order high-frequency approximation (HFA2) is obtained by the introduction of the last of (7.8),
into (7.7), which yields

CD4ps 4IICO,

HFA2 : (s + CD)po = (pCDs 2 + Ly + ry2 )u 0 . (7.15)
r r 72

This equation is identical to the exact n = 0 modal equation because all the ray-theory assumptions are
satisfied exactly for n = 0 motion.

The second-order low-frequency approximation (LFA2) is found from the expansion of the last of (7.8)
as s - 0, which produces

__o( ) 1o - + (2) + (7.16)

When we substitute this result into (7.7) with r = r cD, and keep terms of 0(s') and Q(so), we get

LFA2  o0o(r, s) = -(Os + -IZ)uo(r, s). (7.17)
r

Because there are no terms of Q(s1), the second-order low-frequency approximation (LFA2) for the
n = 0 modal solution is identical to the first-order low-frequency approximation.

To form the modal second-order DAA for an elastic whole-space, a trial equation is selected as

(s + To)Po = (PCDS 2 + U1 S + Uo)Uo, (7.18)
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where To, UT, and Uo are unknown constants that are not functions of s, and po is the pressure, i.e.,

0o = -po. Solving for po in equation (7.18) we get

PO = (.s + To)-I(pCDS2 + Uts + Uo)Uo. (7.19)

Now as s -+ 0,

(s + T0)- 1 = To-I- Tj 2s 8+ Tj3S 2 + .... (7.20)

Substituting this result into (7.19), keeping terms up to and including O(s'), and matching the terms
with (7.17), we get

TT1 UO 4p

r

(7.21)

U - TjUo = 0

To match the high frequency terms, we arrange the trial equation (7.18) for s -* 00 as

Po = (1 - Tos1 + Ts-2 ... )[pcD + Ues- + Uo- 2],uo. (7.22)

A similar rearrangement of (7.15) yields

O (1 CDS -1 + CD )28_2 4Its-1 4tyCD -2 IU'(.3( r r . .) [pCD + (7.23)
+•~)S . . -. )[pco

- r r"

Matching (7.22) and (7.23) through order s-' we obtain

2

UI - pCDTO = 4-1 - P (7.24)
r r

Simultaneous solution of (7.2 1) and (7.24) yields

TO CD

r

r2

4pcDU0  r2 (7.25)

r

so that (7.18) gives for radial n - 0 motion,
C.Dr4j 4 IICD,

DAA'=°-radial (s + )po =(pcDs2 + -ys + -- C-)Uo, (7.26)
2r r (7.2
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Note that this equation is identical to the exact equation (7.9). Proceeding in the same manner for tan-
gential n = 0 motion, we find

DAA'= -tangential (s + cs)ro = (pcss 2 + 2ss (7.27)r r

which is identical to (7.14).

Regarding the assembly (7.26) and (7.27) as one doubly asymptotic approximation for n = 0 motion
of a spherical surface, we conclude that DAA-- is an exact relation.

7.3 EXACT MODAL EQUATIONS FOR n= 1.

Now we will derive the n = 1 modal solution of a spherical cavity in an infinite elastic medium us-
ing direct transformation. We start with relationships between stresses and potentials for axisymmetric
motions (Eringen and Suhubi, 1975).

Cr = A7V2-' 020 2+ 2 2 [rV2-b]} (7.28)

a 20~ 2 ao a fa2(rV) rV20b I4 a2 _ r-a [1 a2(r'
"r 2oroo too 0o[ Or2 r OOr Or I-r aOr "

The relationships between the radial and meridional displacements and the displacement potentials are:

u- [O r) _r V 2  (7.29)

100 1iO(rb)
V -r -O r O00r

We can represent the displacement potentials for n= 1 as

S= fi(s)ki(ý)Pi(cosO) (7.30)

= = gi(s)ki(q)Pi(cos0),

where 7 k, is a modified spherical Bessel function, Pi is Legendre polynominal andfhendg•ar cDofct dcCSlf, and 9x are coefficients dependent only on the Laplace-transform variable s. Multiplying the above

equations by Pm (cos 0), integrating over the surface, and invoking the orthogonality property of Leg-
endre functions, we get, after some rearrangement and substitution;

01= AV01+2/ a0 a ~ 0V(rn]} (7.31)

00, 2___ 12(I 7201 1 a(r~ki) a 0 1 (riki)71 =-- -- - 2 - + - -1 r-2!)r Or r E r2 r Or Or Ir Or J
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where

02 20 2
= r2 r Or r2  (7.32)

We can now eliminate the second-order partials by using the wave equations VT -= 2• and VC2- 1 =

CS 20 1.

Oa1 = ps -- Vy'1  (7.33)
r r

l ps¢,LV - -Vi - -Il,

r r

We can get the n = 1 relationships for the displacements (7.30) by employing Legendre functions
and (7.32).

Or r

(7.34)

V 1  +--
Or r r

We can use (7.29) and the above equations to solve for fi and g, as

-CDr(-cskI(i7) - rsk'(nj))uj + 2rCDcskl(i7)vi
A = (7.35)

rCDcskl(0)uI + r 2scsk'(ý)vj
91 =

=-2CDc.;k, (?7) ki () + rscs ki (71) k'() + 2~''~'f

We can eliminate 61 and V) in (7.33) using f, and g, and (7.30). Substitution of the expansions for the
modified spherical Bessel functions, given by

ki(• = -(ý-2 + •i

)= -(-2-3 - 2--2 ý-1)

ki(77)= e-,(i7- 2 + n-')

k(,7) = e-(-2,q- - 2,q- -

yields the traction-displacement relations,

[ T2 , + -- + =] \ [pC U23 U1 U2 " 4 (7.36)

r- r,2 71 r r4 r3 V1
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where

T = { 02 C+ C D + c S }= (2 cD + cs)I

To = { 2c+ c 0 } (9C 2 + c2)I

2)C + c2DC

0 2C2 J"CS =(cD S

U2= { 4 +pCD +PCDCS 4 - 2pCDCS } (7.37)2y• - pcDcs 21L + pc' + 2pcDcs

, 4p 4J2CD + S D [~CS + CDCS] 41 u[2CD + CS] - 2p[4DCS + CDC~ S
-, = 21[2cD + CS]- p[CCS + CDC ] 2p[2CD + cS] + 2p[CCS + CDcS]

4u[2C2 + C2] +± p[C2C2 ] 4p42C2 + C2] - 2p[C52 }C

121[2c + C2] _ p[C C2] 2u[2c' + C2] + 2pi[C2C2c]

Equation 7.36 is the exact n = 1 modal equation. We will now derive various approximate relations
for n = 1 motion.

7.3.1 n= 1 High-Frequency Approximations.

First, we write (7.36) as

[I + r-'T 1 s-1 + r- 2Tos- 2]ti = [pC + r-1 U 2 s'- + r-2Uxs- 2 + r-3 Uos-3]sua,
(7.38)

where t1 and ul represent the n = 1 traction and displacement vectors. To get HFAI=1 , we drop terms
of O(s-2), and O(s- 3 ) inside both brackets; to get HFA =1 , we drop terms of O(s-a), O(s-2), and
O(s-3) inside both brackets. Thus we have

1 2 U 2s
HFA2 1  [Is + 1T 1]t, = [pCs + - 1u1 , (7.39)

r r

HFAn=l tl = pCsui (7.40)

7.3.2 n=1 Low-Frequency Approximations.

We premultiply (7.38) through by r2T-1 = r 2 /(2C2 + C2s) to get

[1 -- s+ )2S2] It = (rC2)- [Uo + rUjs + r 2U 2S2 + r3 pCs3]ul (7.41)
C1  CO

where c0= C0 . CD S and C1 = 2c4 + cs/2CD + cs. Now we divide through by 1 + Cs + (1oo)2s to
get, through 0(sI),

LFA 1 tl = [K1 + K'ls]ul (7.42)
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where, with c. = (CDCs/co)
2 and c2 = CCDCS(CD + Cs)/C ,

K, = (rc 0)-IU f 411 + pc22 4yt - 22 (7.43)
r t 21L- p2 9 + 2pc2

K" c_{[Cg 2CiUi - c° 2UO] = PC-I(c2 - c2) {1 -2 (7.44)

If we keep terms only through O(sP), we get the first-order low-frequency approximation

LFAn= 1  t, = Klul, (7.45)

7.4 n= 1 DOUBLY ASYMPTOTIC APPROXIMATIONS.

As the form of the modal first-order approximations for low- and high-frequencies are similar to the

form of the first-order low- and high- frequency general DAA (section 6.1), we can use the same process

to combine (7.40) and (7.45) to get the first-order DAA for the n = 1 motion.

DAA'n=1 tl = pCil + KlUl (7.46)

We can form a one-low, two-high DAA (DAA'-l) from (7.39), (7.45) and the trial equation

(s + To)t 1 = (s2pC + sU1 + Uo)ui

Proceeding in the manner described in section 6.2, we get for the spatial operators

To = [pCT _ U2 + K1][pC]-' = W,
r r

U1 = K1  (7.47)

Uo = WK,

which yields

DAA n1 (S + W,)t1 = (s2 pC + sKi + WIK 1)U1  (7.48)

For the full second-order DAA (DAAn=1), we again start with the trial equation (7.47) and employ (7.39)

and (7.42). Using the matching procedures employed to obtain (7.21), we find from low-frequency

matching

TolUo = K1  (7.49)

TolU1 -- To2Uo -= K',.
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The first equation is from the O(s°) match, and the second equation is from the O(s 1 ) match.

For high-frequency matching, we use the procedure employed to obtain (7.24) this yields

U, - TopC = "-IU2 - r-TIpC (7.50)

which results from the (s- 1 ) match. Finally, simultaneous solution of (7.49) and (7.50) yields

To = [ TjpC -U2 + Ki][pC - K'1 ]- 1 = V1
r r

U1 = VlpC- TpC +U 2  (7.51)

r r

Uo = VIK 1 .

which yields DAA 2 for n = 1 motion

DAAn= 1  (s + V 1 )t P[Cs 2 + (VIPC - Ties + s + VIKI ul (7.52)
r r

In this section we have developed exact and DAA temporal impedance relations for n = 0 and n = 1

motions of a spherical surface embedded in an infinite elastic medium.
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SECTION 8

CANONICAL PROBLEMS

Here we compare DAA-based and exact results for canonical problems, as done previously by Geers
and Underwood (Underwood and Geers, 1981) and by Mathews and Geers (Mathews and Geers, 1987).
In a recent analytical study, Oberai (Oberai, 1994) generated DAA-based response for step-wave-excited
infinite-cylindrical and spherical shells embedded in infinite elastic media. His comparisons with cor-
responding exact results showed DAA1 to be fairly satisfactory and DAA 2 to highly satisfactory.

We first discuss the computer programs developed to implement the DAA equations and then we com-
pare results for four problems:

1. A spherical cavity embedded in an elastic whole-space subjected to an n = 0 internal step pres-
sure.

2. A spherical cavity embedded in an elastic half-space subjected to an n = 0 internal step pressure.

3. A spherical cavity embedded in an elastic whole-space subjected to an n = 1 internal step trac-
tion.

4. A uniform step pressure applied to a portion of the surface of a half-space.

8.1 DAA COMPUTER PROGRAMS.

We developed three computer programs for computing DAA-based responses. The first program,
EDAA 1, implements the theory of first-order doubly asymptotic approximations for three-dimensional
elastic media, both infinite and semi-infinite. The second program, EDAA1-2, implements the theory
of the mixed-order (one-low, two high) doubly asymptotic approximation for three-dimensional infinite
elastic media. The third program, EDAA2, implements the theory of second-order doubly asymptotic
approximations for three-dimensional elastic media, again for both infinite and semi-infinite spaces.
The routines for the first-order kernels, U0 and TO (6.24), are based on software obtained from
Mathews (Mathews, 1990).

Eight-node serendipity elements are used to discretize the surface (Hughes, 1987)( Figure 8-1). The

51



7
6

5

22

3
Y

Figure 8-1. Eight node serendipity element.

weighting functions are
1

N(, -- (1 1 -62)(1 + 6 + 62)
4

N2(61, 6) = ( x)1 - ý21
1

V3 , = (1 6)+ )(1 - 62)(--1 + 1 "+ 6)
4

1N4 -6,6 (1+61~)(1 -2 (8.1)

N5 (61,, 2) = (1 + 61)(1 + 62)(--1 + 61 + 62)
4

1
1 .(1 _ 62)(1+ )

N7(61,ý2) - 6(1- )(1 +C2)(-1 - 61 +"-2)
4
1

J~s(•I1 2) - (1 _ 5x1)(1- _6 )

where E e [-1, 1] and E2 E [-1, 1]. The methods explained in Section 6.4 are used to form the kernel
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matrices with 3 x :3 Gauss quadrature employed for element integration. The required matrix inversions
are performed with standard Gauss elimination techniques. Due to the basic assumption of linearity,
all matrices are formed only once, and decomposed once, to form the DAA equations. The loads f
and t are calculated at each step. The programs use trapezoidal time integration techniques. The first-
order DAA (DAA 1) is a first-order ordinary differential equation for u and the mixed-order (DAA1 _2)
and second-order DAA (DAA2) second-order ordinary differential equation for u. Therefore the two
programs have different implementations of the trapezoidal method.

The DAA1 (EDAA 1) matrix equations (6.26) are advanced in time to step n + 1 using the following
algorithm (Hughes, 1987);

6t.
un+1 = Un + -- -Un

2Z D tB-1G Un. 1  = fn~1+l 6-1tD~l (8.2)6 D 2

9

where c•t is the time interval used, and ifln~1 is the predictor.

The programs EDAA 1-2 and EDAA2 use the trapezoidal method for second-order differential equa-
tions. The trapezoidal method that is used for time integration in EDAA2 is shown below:

2 -t(82

[-D D -(n 1 - WB- 1AB 1 G) t+ WB-GI un+1

2

b6t

S4.
+ D( un +t 2 ui + iin)

2

Vn+1 - (Un+ 1 - Un) (8.3)

2 4.
iin+l Vn+1 - -Un

61- 6t

U~n+1 - Vn+l - iln

The time integration method for EDAA 1-2 is formed from the EDAA2 by dropping terms containing
A.

8.2 SPHERICAL CAVITY/WHOLE-SPACE/STEP PRESSURE PROBLEM.

The first problem is a spherical cavity embedded in an infinite elastic medium and excited by an in-
ternal step pressure. This problem possesses radial symmetry, and has a well-known analytical solu-
tion (Timoshenko and Goodier, 1970). With a as the cavity radius and Po as the pressure magnitude,
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the radial displacement of the cavity is given by

11(t 4p ac Vt~os jt + 13 sin ae3t)

-- et(- sina !3t + cos cait) (8.4)

+1 - e-t(cos-a3t + sina3t).

where

CD(l - 2v)
a(1 -v)

(8.5)

3= 1 - 2

The corresponding analytical DAA1 solution is simply

UDAA(t) = P ( (8.6)

The boundary-element model of the cavity boundary consisted of 24 eight-node elements over the en-
tire spherical surface. The analytical exact, analytical DAA1 , and numerical DAA1 solutions are shown
in Figure 8-2 for the parameters p = 1.00, p = 1/6, v = 1/4, a = 1, and po = 1. The analytical DAA1

and numerical DAA, solutions are seen to be almost identical, and the DAA1 solutions agree well with
the analytical exact solution at both early and late times. As previously observed by Underwood and
Geers (Underwood and Geers, 1981), the DAA, solutions do not exhibit the response overshoot seen
in the exact solution. This is expected from first-order differential equations like (6.7).

The radial displacement response from the second-order DAA2 (EDAA2) is compared with the ex-
act response in Figure 8-3. Also in this figure is the DAA1 boundary-element result. The agreement
between the second-order DAA and the exact analytical solution is excellent. The small difference be-
tween the two results is due to element discretization, which yields a discrepancy in surface area of 1%.
The second-order DAA 2 yields the "overshoot" characteristic of elastic media problems.

Figure 8-4 shows a comparison of exact, boundary element DAA1 , mixed-order modal DAA1 _2, and
mixed-order boundary element DAA (EDAA12) results, for the cavity subjected to an internal step
pressure. The exact Timoshenko and the modal DAA 1 _2 results are identical. This is because LTA, is
identical to LTA 2 for this case.

8.3 SPHERICAL CAVITY/ WHOLE-SPACE/n=1 STEP TRACTIONS PROBLEM.

This problem involves a spherical cavity embedded in an infinite elastic medium and excited by an
n = 1 internal step traction. The problem is axisymmetric. The exact modal relation, (7.36), includes
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Figure 8-2. Exact and DAA1 results for spherical cavity in an elastic medium subjected to an internal
step pressure.

2.0 , i

1 .5 . .. . . . . . .

Ei -Exact Tim nko)

r. 0.0 DA I 8EM , I I I

UJ)

0 5 10 15
Time coDt/a

Figure 8-3. Exact, DAA 1, and DAA2 radial displacement of a spherical cavity in an infinite elastic
medium subjected to an internal step pressure.

55



2.0 I

1.5

Modal fTimoshenko)

- -~DAA 12 Modal

1 . ............. DAA BEM

Ell! 2 BEM

Q)

S0.5 .. . . . . . . . . . . . . . . . . . . .-- ------. -----------------------.

0 5 10 15
Time cot/a

Figure 8-4. Exact, DAA 1, and DAA1 _2 radial displacement of a spherical cavity in an infinite elastic
medium subjected to an internal step pressure.

terms of 0(s 3 ), whereas the DAA2 and DAA1 _2 relations, (7.52) and (7.48), include terms only through
0(S2).

The modal solution for this case is determined by using 71 equal to po in equation (7.36) and al equal
to 2 po. No a, to rl ratio other than two will produce a stable late-time result. Figure 8-5 presents a
comparison of radial displacement responses for the exact relation (7.36), the DAA2 relation (7.52),
and the DAA1 relation (7.46). Figure 8-6 compares the meridional (tangential) displacement solutions
for these relations. Agreement between the exact and DAA2 modal results is excellent.

Finally, Figures 8-7 and 8-8 compare results from the mixed-order DAA, DAA 1I 2, (modal and BEM),
with exact and DAA1. We see that the essentially coincident modal and BEM DAA 1 _ histories deviate
modestly from the exact history.

8.4 SPHERICAL CAVITY/ HALF-SPACE/ STEP PRESSURE PROBLEM.

The third problem is a spherical cavity embedded in a semi-infinite elastic medium and excited by an
internal step pressure. This problem is very difficult for doubly asymptotic approximations, at least
as formulated to date. Only the late-time approximations have terms that include the effect of the free
surface. Specifically, the dynamic free-surface effect is manifested only in the half-space terms of A,
B3, and F [see (5.7), (5.8), (5.12), and (5.14)]. The reflection of the waves from the free surface occurs
at intermediate times if the cavity is fairly close, but not immediately adjacent, to the surface.

56



4.0 I I I I

c l 3 .5 -- - - - - - - - - - - - - - -- - - - - -
E 3 .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .IS3.0

2.5 --- Exact Modal
Q 2. 0 daa2 Modal

daa2 Modal
o -,I.-...

1.5 ------------------------------------------- alMolS1.0 ---

S 0.5 - - - - - - - - - - - - - - - - -- - - - - - -

0.0
0 5 10

Time cDt/a

Figure 8-5. Exact, DAA1 , and DAA 2 radial displacements of a spherical cavity in an infinite elastic
medium subjected to n=l step tractions.
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Figure 8-6. Exact, DAA 1, and, DAA2 tangential displacements of a spherical cavity in an infinite
elastic medium subjected to n = 1 step tractions.
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Figure 8-7. Exact, DAA1 , and DAA 1_2 radial displacement of a spherical cavity in an infinite elastic
medium subjected to n = 1 step internal tractions.
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Figure 8-8. Exact, DAA 1, and DAA 1 _2 tangential displacements of a spherical cavity in an elastic
medium subjected to a n = 1 step internal tractions.
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This problem does not possess radial symmetry, and does not posses an analytical solution. However,
a boundary-element solution based on numerical inversion of Laplace transforms has been generated
by Manolis and Ahmad (Manolis and Ahmad., 1988), and an analytical solution to the related static
problem exists (Bonefed, 1990). In terms of the geometry shown in Figure 8-9, the latter solution is

u, = Poa3 {(1 - 2V)R3 3z(z + d)rR

1 [ r +r
+ LR'jý3  7j*3 j

(8.7)
. 2v) (z + d) z 3z(z + d) 2

- R*3  R*3  R*5

1[(z +d) +(z +d)]

13 R*3

where

= = V/r + (z - zo) 2

R- = ý/r 2 + (z + zo) 2 .

Numerical DAA1 and numerical inversion solutions for this problem are shown in Figures 8-10-8-12,
along with the late-time static asymptotes given by (8.7); the physical parameters specified are the same
as those previously given for the infinite-domain problem. Figure 8-10 pertains to the top of the cavity,
i.e., the point on the cavity surface closest to the free surface of the elastic half-space. The numerical
inversion solution by Manolis and Ahmad shows the pressure wave reflected from the free surface, at
CDVa = 2. The effects of the reflected shear and Rayleigh wave at CDta = 2.73 and CDVa = 3.4, respec-
tively, complicate the response. Figure 8-11 pertains to a point 900 around, and Figure 8-12 pertains to
the bottom of the cavity. These figures show that the DAAx solutions agree with the numerical inver-
sion solutions at early time and appear to approach the correct late-time asymptotes. Unfortunately,
the numerical inversion solutions do not extend far enough in time to allow a completely satisfactory
comparison.

We also generated results from halfspace-DAA 2 for the spherical cavity in a semi-infinite elastic domain
subjected to an internal step pressure. We show the DAA2 radial displacements at three locations
on the spherical surface, 0 = 00, 0 = 90', and 0 = 1800 in Figures 8-13- 8-15. We compare these
solutions with the corresponding numerical inversion solutions (Manolis and Ahmad., 1988) and the
static asymptotes (t = oo). All radial displacements have been divided by the exact static solution for

SPa
aspherical cavity in an infinite elastic domain, Ustati ----

Radial displacement response at 0 = 00 (closest to free surface) shows the effect of the dilatational
wave reflecting from the free surface at C-t = 2.0. DAA 2 radial displacement response at 0 = 900

a
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Figure 8-9. Geometry for a cavity embedded in a semi-infinite elastic medium.
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Figure 8-10. Radial displacement response of a step-pressurized cavity
in a semi-infinite elastic medium (0 = 0', d a).
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Figure 8-11. Radial displacement response of a step-pressurized cavity
in a semi-infinite elastic medium (0 = 900, d = 3a).
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Figure 8-13. Radial displacement response of a step-pressurized cavity
in a semi-infinite elastic medium with DAA 2(0 0', d = a.)
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Figure 8-14. Radial displacement response of a step-pressurized cavity
in a semi-infinite elastic medium with DAA 2 (0 = 900 d = 2a).
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Figure 8-15. Radial displacement response of a step-pressurized cavity in a semi-infinite elastic
medium with DAA 2 (0 = 1800, d = 3a).

agrees well with the exact solution for a whole-space, see Section 8.2. Radial displacement response
at 0 = 1800 exibits the greatest overshoot beyond the corresponding late-time asymptote.

8.5 STEP PRESSURE ON A HALF-SPACE WITH WHOLE-SPACE MATRICES.

The fourth (two-dimensional) canonical problem is a step pressure applied to a portion of the surface
of an elastic half-space (Figure 8-16). Because of the spatial discontinuity of the load, a relief wave
travels from each discontinuity toward r = 0. The problem has been studied analytically by
Eason (Eason, 1966). The surface is flat so there is no curvature, a = 1.61, and the material properties
are the same as those used previously. The surface is discretized using 36 elements. We terminated the
model mesh at two different radii, -11 = 1.0 (Manolis and Beskos, 1988) and !- = 16.0. We compare
results for the normal displacement at r = 0 for the two boundary radii in Figure 8-17. Eason's analyt-
ical result is suspect at D = 1.8; the discontinuous displacement is probably caused by the inversion
method used (Kim and Soedel, 1988). Note that the result from the second-order whole-space DAA
does have a smooth response. The smaller radius mesh begins to diverge significantly at s = 5.0.
The second-order DAA response is linear until t = 1.0, when a dilatational wave reaches the center

a
(r = 0) from the edge of the loaded area. When ELI > 1.0 the second-order DAA strongly resembles

a
a first-order DAA, i.e. it produces no elastic overshoot. This is because the surface is flat so the cur-
vature terms in the second-order early-time approximations are zero for this problem. As expected the
late-time (static) result is accurately found.
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Figure 8-16. Normal step-load applied to an elastic half-space.

1.2 DAA2 ar/co=1.0
-1.0- - - -- - - -- - - -- ---- ---..: . .: . . '- - -. . . . . -/ . . . . . .: . .:--- - -

S-- f ... ... ...- --... .. --- -. ..- - .. ...1.0

' J _ DAA2ar/%,=16.O0.8----------------------- -------------------- - SEASON

~0.6-------------------------

0.4

0 .2.. . . . . .-- -- - -- -

0.0
0 2 4 6 8 10 12

Time cDt/a

Figure 8-17. Normal displacement at r = 0 for normal step load applied to an elastic half-space with
whole-space DAA 2.
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Figure 8-18. Normal displacement at r = 0 for normal step-load applied to an elastic half-space with

half-space DAA 2.

8.6 STEP PRESSURE ON A HALF-SPACE WITH HALF-SPACE MATRICES.

The last comparison also pertains to the half-space problem. The discretatization for this problem con-
sisted of 36 elements. Figure 8-18 shows normal-displacement response at r = 0 from the half-space
DAA2 along with Eason's analytical result. The half-space DAA 2 response is almost identical to the
whole-space DAA 2 response discussed previously, but was computed in about one-fourth the time be-
cause no boundary elements were needed for the unloaded surface area.

65



SECTION 9

CONCLUSION

This report documents a systematic formulation and an analytical and numerical evaluation of first-
order and second-order doubly asymptotic approximations for computational boundaries in the solution
of transient soil-structure interaction problems. Specifically,

1. The early-time (high-frequency) approximations for an acoustic medium, systematically formu-
lated by Felippa (Felippa, 1980b), were extended to isotropic elastic domains.

2. Ray elastodynamics, developed by H. B. Keller and J. B. Keller (Keller, 1958), (Keller, 1964),
(Ahluwalia et al., 1969), was also employed in the formulation of the early-time approximations.

3. The first- and second-order late-time (low-frequency) approximations for infinite and semi-infinite
elastic media were systematically formulated from the elastodynamic boundary-integral equa-
tions of Cruse and Rizzo (Cruse and Rizzo, 1968) and the half-space operators of Banerjee and
Mamoon (Banerjee and Mamoon, 1990).

4. The first-order DAA's for both infinite and semi-infinite isotropic elastic media were systemati-
cally formulated; the operator matching method of Nicholas-Vullierme (Nicholas-Vullierme, 1991)
and of Geers and Zhang (Geers and Zhang, 1991) was used to derive these DAA's, which support
the heuristic formulation of Underwood and Geers (Underwood and Geers, 1981).

5. The second-order DAA's for both infinite and semi-infinite isotropic elastic media were system-
atically formulated using the operator-matching method.

6. Mixed-order DAA's were formulated for both inifinite and semi-infinite isotropic elastic media;
each combines a first-order low-frequency approximation with a second-order high-frequency
approximation.

7. Finite-element discretization was introduced to configure the DAA formulas for boundary-element
solution; pertinent computer programs were written to generate numerical results.

8. Exact, DAA1 , DAA 2 and DAAI_ 2 modal computational boundary relations were derived for di-
latational, rotational and translational motions of a spherical boundary in an infinite isotropic
elastic medium.

9. Boundary-element DAA, and DAA,_ 2 results for suddenly pressurized spherical cavities embed-
ded in infinite and semi-infinite elastic media were generated; the DAA results were compared
with corresponding analytical results from Timoshenko and Goodier
(Timoshenko and Goodier, 1970), Manolis and Ahmad (Manolis and Ahmad., 1988),
Bonefed (Bonefed, 1990), and with analytical results generated herin.
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10. Boundary-element DAA 2 results for a pressure load applied suddenly to a portion of the surface
of an elastic semi-infinite domain were generated; these were compared with results reported by
Eason (Eason, 1966).

The principal conclusions reached in this study are:

1. First-order doubly asymptotic approximations are useful as computational boundaries for elastic
media, but they cannot predict the response overshoot that characterizes many problems.

2. Second-order doubly asymptotic approximations are quite useful as computational boundaries
for elastic media, successfully predicting response overshoot.

3. Half-space DAA's are much more efficient than whole-space DAA's for half-space problems be-
cause the former do not require discretization of unloaded free-surface areas.

4. The whole-space DAA2 is exact for dilatational and rotational motion of a spherical surface; for
the translational cases studied, the modal DAA2 results agree perfectly with the corresponding
exact results.

5. The mixed-order whole-space DAA (DAA1 _2) is exact for dilatational and rotational motion of
a spherical surface; it is less accurate than the whole-space DAA2 for translational motion.
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APPENDIX

TENSOR OPERATORS FOR HALF SPACE

The following are the first group of CU operators that pertain to the cylindrical coordinate system.
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z Oz
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The following are the second group of U operators that pertain to the Cartesian coordinate system.
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